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APPLICATION OF LOCAL CO-ORDINATE SYSTEMS TO 
THE SOLUTION OF INTEGRAL EQUATIONS REFERRED 

TO PLANE FLUID FLOW PROBLEMS 

WOJCIECH SULISZ* 

Department of Civil Engineering, Oregon State University, Corvallis, O R  97331 -2302, U.S .A.  

SUMMARY 

Two-dimensional fluid flow problems expressed in terms of velocity potentials or stream functions are often 
summarized as boundary-value problems for the Laplace or Poisson equations, or the homogeneous or non- 
homogeneous biharmonic equations. Simple local co-ordinate systems have been applied to the solution of 
integral equations associated with these boundary-value problems. This procedure has been shown to be an 
efficient technique in the numerical solution of fluid flow problems. 

KEY WORDS Fluid Flow Problems Integral Equations Local Co-ordinate Systems Wave Structure-Interaction 
Problems Wind-driven Current Problems 

INTRODUCTION 

Fluid flow problems are often solved by introducing a velocity potential or stream function. This 
procedure often leads to a boundary-value problem for the Laplace or Poisson equations or the 
homogeneous or non-homogeneous biharmonic equations. The solution of such boundary-value 
problems is, in general, difficult. Increase in memory size of digital computers have now made 
direct numerical solution of the boundary-value problems practical. 

The boundary element method (BEM) has proved itself to be an efficient and accurate numerical 
scheme in the solution of fluid flow problems. An important step in solving boundary-value 
problems using this method is the solution of an integral equation. Analytical solutions to integral 
equations are generally not practical. A straightforward numerical approach is to replace the 
integral equation by a system of simultaneous linear equations. This is usually achieved under the 
assumption of uniformly distributed functions occurring in the integrands, over the boundary or 
internal elements. A review of this procedure can be found in References 1 and 2. 

In this paper simple local co-ordinate systems are applied to the solution of integral equations 
arising from the BEM formulation for plane fluid flow problems. A two-dimensional region has 
been divided into triangular cells and the boundary of the region has been divided into line 
segments. The integral equations have been solved using linearly varying functions over the 
boundary elements or triangular cells. This type of approach has been applied to the solution of 
free surface flow problems. In order to verify the numerical results, computational examples have 
been chosen in which either the analytical solution is known or experimental data are available. 
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SOLVING INTEGRAL EQUATIONS USING LOCAL CO-ORDINATE SYSTEMS 

Integral equation referred to plane fluid flow problems 

The description of plane fluid flow problems as boundary-value problems often leads to the 
Laplace or Poisson equations or the homogeneous or non-homogeneous biharmonic equations 
with proper boundary conditions. There are some formulations of the BEM which make the 
solution of such boundary-value problems possible.lP6 

In the present paper the formulations based on Green’s second identity and the Rayleigh-Green 
identity are used. Accordingly, the solutions of the following two integral equations are considered: 

where it is assumed that the domain fil(fiz), its boundary g1(g2) and the functions 8,, P1(O,, p2) 
satisfy the condition for which Green’s second identity (the Rayleigh-Green identity) is 
valid.’,’ - ‘ O  

Making use of equation ( 1 )  and of the fundamental solution, the solution in the domain I? 
bounded by ŝ  of the boundary-value problem for the Laplace equation (V2U = 0) or the Poisson 
equation (V2U = @) requires a numerical solution of the following integral equation: 

where r is the distance from an arbitrary point, P, to a point, Q, on the boundary 2; n is the unit 
outward normal to the boundary. 

In the case of the biharmonic homogeneous equation (V4U = 0) or the biharmonic non- 
homogeneous equation (V4U = 4) the following integral equations should be solved: 

a(v2u)] d g  + j R  In rV4U dl? = 0, Ss [ v2U an - In r -  

- V2 ( r2  In r )  - + V2 U 

d(ln r) 
a n  

au a(r2 In r )  
dn a n  

- r2 l n r m } d g +  an  SR r2 lnrV4Udfi = 0 

(4) 

Solutions of the integral equation for the Laplace and Poisson equations 

The first step in the numerical solution of the boundary-value problem for the Laplace equation 
formulated in terms of an integral equation is the subdivision of the boundary ŝ  into N suitably 
small straight-line  segment^.^.' Then equation (3) becomes 

j = 1  $ 1 s, [UT( ln r ) - ln r -  an  a n  dS,=O. 

If i t  is assumed that 
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i 

Figure 1 .  5-1 co-ordinate system 

1. the point Pi is placed at the beginning of the ith segment 
2. the origin of the local co-ordinate system (5,q) is located at  the point Pi (Figure 1) 
3. between a pair of node points Qj, Qj+ (Figure 1) the function U and its outward normal 

derivative vary linearly according to 

then the substitution of equations (7) and (8) into equation (6) yields an algebraic equation of the 
following form: 

The quantities I!,j and Iffj can be written as 

where Q(Pi) is the inner angle relative to l?, between QiQi-l and QiQi+l .  
In the case of the Poisson equation, if a particular solution of this equation is not known, it is 
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Figure 2. 1-6 co-ordinate system 

necessary to discretize the surface 9, and the domain l?, as well. The boundary 9 is divided into N 
small segments and the domain l? is divided into M small triangular cells. The variable 8 for such 
cells is approximated by a linear function. Then equation (3) becomes 

j =  1 

The procedure continues by assuming that 

1. The point Pi is placed at the beginning of ith segment. 
2.  The origins of the local co-ordinate systems ( 5 , ~ )  and (2,s) are located at the point Pi 

(Figures 1 and 2). 
3. Between a pair of node points Qj, Qj+ (Figure 1)  the function U and its outward normal 

derivative vary linearly. For each triangular cell Rm(m = 1,2,. . ., M) the function 8 is 
approximated by the following linear function (Figure 2): 

where 

N M 

j =  1 m =  1 

where 1!!,,,1]; and lZm are defined in Appendix I. 
Applying equations (9) or (18) at each point Pi(i = 1,2, ..., N),  in a well-posed problem, N 
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simultaneous equations are obtained in an equal number of unknowns. The solution of these 
equations provides the boundary data that can be used in equation (3) to find the solution at 
any interior point. 

Solution of the integral equation for the homogeneous and 
non-homogeneous biharmonic equations 

homogeneous equation, equations (4) and (5) yield 
The boundary ŝ  is subdivided as in the previous discussion. Then in the case of a biharmonic 

Assume that the point Pi and the local co-ordinate system (5, v ] )  are referenced to the beginning 
of the ith segment and that between a pair of node points Qj, Qj+l  the functions U ,  dU/an, 
V2U, a(v2u)/dn vary linearly as 

= B 1 1 5  + B12, 5 j d  4 d 4 j + l ,  

= B 4 1 5  + B 4 2 ,  5 j 6  5 6 5 j + l .  (24) 

Then the two following algebraic equations are obtained from equations (19) and (20): 

N 

( I I l , j  + I I l f j  + I I l f )  + 11:;) = 0 
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The quantities r"l.,j and T::j can be calculated from equations (10)-(12) using B,,, B 3 2 ,  

B4, and B4, as alternatives to A , , ,  A , , ,  A,, and A , , ,  respectively. The remaining unknown 
quantities are calculated from the following formulae: 

II' , , i-  1 + Il f , i  = - 4Q(Pi)(Lqi, 

If a particular solution to the biharmonic non-homogeneous equation is not known, the 
boundary ŝ  and the domain ff are discretized as with the Poisson equation. The local co-ordinate 
systems (5, q)  and (A, 6) ate used and it is assumed that 

where B,,, B,, and B,, are calculated from equations (15)-(17) using 4k, d l  and 4, instead of f i k r f i f  
and ( f in )  respectively. Substitution of equations (21)-(24) and (32) into equations (4) and (5) yields 
the following two algebraic equations: 

N M c + II;;j + 11;:; + 11::) + c (IIZ, + 11:; + 11;;) = 0. 
j =  1 m =  1 

(34) 

The quantities T::f,, T:& and TZ,, can be calculated from equations (68)-(70) using 
B,,, B,, and B,, instead of A , , ,  A32 and A , , ,  respectively. The remaining unknown quantities 
are defined in Appendix 11. 

Applying equations (25) and (26) or (33) and (34) at  each point Pi(i= 1,2, ..., N ) ,  2N 
simultaneous equations are obtained for an equal number of unknowns in well-posed problems. 
The solution of these equations provides the boundary data that can be used in equations (4) and 
(5) to find the solution at any interior point. 
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I ,,-I I2-J 

Figure 3. Definition sketch and co-ordinate system 

COMPUTATIONAL EXAMPLES 

Wave forces on impermeable objects 

assumed that 
The situation considered for analysis is shown schematically in Figure 3. Additionally it is 

1. The fluid is inviscid and incompressible. 
2. The sea bottom is impervious. 
3. A train of simple harmonic waves of frequency w and small amplitude a is approaching the 

object from the left. 
4. The velocity in each flow domain has a potential. 

According to these assumptions the wave field can be specified by a velocity potential of the form 

m1(x,z,t)= Re[4,(x,~)e- '~ '] ,  1 = 1,2,3 (35) 
where Re denotes the real part and i = ,/( - 1). 

&,(x, z )  may be written as follows: 
The wave field is completely specified if 41(x,z) is known. The boundary value problem for 

R,: V24,  = 0 ,  1 = 1,2,3,  (36) 

@ , = O ,  z = o ,  841 w2 s,$: - - - 
az 9 

861 
ax x- - co: -+ik161 =0 ,  

ik243 = 0, 843 
ax x-00: __- 

(37) 

where Sl,o(Sl, l)  is the part of the R ,  boundary domain that is a free water surface (impermeable part 
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of the boundary), S1,, and Sm,l are the common boundaries of the domains R ,  and R,, &p,pn,,, 
is the outward normal derivative of 4, at S,,,, and k, and k, are the wave numbers corresponding 
to the fluid depth in the domains R ,  and R,. 

The boundary value problem, equations (36)-(42), has been solved by applying the boundary 
element method in the domain R ,  with the following analytical solutions in the semi-infinite 
domains R ,  and R i 2 :  

x b  - 1 , :  

cosh k,(z + h,) 
+ $1, 

ig' eikl(x + 11) 

41=-; cosh k,h,  (43) 

x31, :  

where R(T) is the amplitude of the reflected (transmitted) wave, RUn(Tpn) is the amplitude 
of the local standing wave and g is the acceleration due to gravity. 

The eigenvalues k,, k,, CI,, p, are roots of the equations 

(46) 

(47) 

w2 
- = k, tanh(k,h,) = k ,  tanh (k ,h,) ,  
9 

w2 
- = - an tan (a,h,) = - p, tan (p,h,). 
9 

The forces on the object are determined by integrating the pressure acting on the surface of the 
object. The pressure, p ,  is expressed as13314 

a@ P p = - p- - -(u2 + u 2 ) ,  
at 2 

where p is the fluid mass density and u(u) is the velocity in the x(z) direction. Although the solution 
for the velocity potential is obtained on the basis of linearity, in the calculation of pressure the 
squared terms of velocities are retained as a numerical experiment. 

The method described above has been used to calculate wave forces on horizontal circular 
pipelines of radius R .  The results are presented using the force coefficients defined below: 

maximum horizontal force per unit length of the pipe 
PSR2 

f i z m  = 2 

f 2 x m  = 9 

maximum positive vertical force per unit length of the pipe 
PSR2 

PSR2 
maximum negative vertical force per unit length of the pipe f Yzm = 

In Figures 4 and 5, the numerical and e ~ p e r i m e n t a l ' ~ , ' ~  values of the force coefficients are 
plotted (k, = k, = k ,  h ,  = h, = h). The predicted results are in reasonable agreement with the 
experimental data. 
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Figure 4. Variation of maximum force coefficient with relative amplitude 
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Figure 5. Variation of maximum force coefficient with relative amplitude 

Wave reflection and transmission at rubble mound breakwater of arbitrary cross-section 

equations:16*17 
Let us assume that water wave flow in a porous domain l? is governed by the following 

am 1 
at P 

s- + - ( p  + yz) + f WQ, = 0,  (49) 

where 

J R  J t  

is the damping coefficient, S is the inertial coefficient, y is the weight density of fluid, v is the 
kinematic viscosity, E is the porosity, K is the intrinsic permeability, C, is the turbulent damping 
coefficient, Tl is the wave period V = VQ,. 
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Figure 6. Definition sketch and co-ordinate system 

The situation considered for analysis of the problem of wave reflection and transmission at a 
rubble mound breakwater of arbitrary cross-section is shown schematically in Figure 6. 

I t  is assumed that the rubble mound breakwater is built from L porous layers ( I =  3,4, ..., 
L+ 2-Figure 6) each of known physical (8,) and hydraulic ( K , ,  Cf,) properties. Additionally it 
is assumed that the water wave flow in each porous layer is governed by equations (49) and (50) 
and that the assumptions taken into consideration in the problem of wave forces on objects are 
valid. Then, the harmonic velocity potentials may be expressed as the real part of a complex 
function in the form 

(€J[(x,z, t )  = Re [4,(~,z)e- '~ ' ] ,  1 = 1,2,. . . , L+ 4 .  (52) 

R,: V2q5[(x,z)=0, 1=1,2 ,..., L + 4 ,  (53) 

The boundary value problem for the spatial velocity potential, 4,(x, z), can be written as follows: 

(S, + &)4, = 0 ,  z = 0 ,  
84, m2 
az 9 

S,,o: (54) 

where f, = 0, S, = 1 and E ,  = 1 for 1 = 1,2,L+ 3, L+ 4, and S ,  is the inertial coefficient for the 
domain R, (see equation (49)). 

The boundary-value problem is solved iteratively by applying the boundary element method in 
the breakwater body and in the vicinity of the breakwater and the analytical solution in the exterior 
semi-infinite regions R,  and RL+4. 
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Figure 7. Trapezoidal layered breakwater (TW-2) 
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Figure 8. Reflection and transmission coefficients for trapezoidal layered breakwater (TW-2): dependence on wave 
steepness 

Reflection and transmission coefficients for the two-layered trapezoidal-shaped structure shown 
in Figure 7 were computed as an example. The media properties are given by S ~ l i s z . ” ” ~  The 
inertial Coefficient, S,  is unknown, and it is taken as equal to 1 by default. The reflection 
(RC = IRl/ii) and transmission (TC = ITl/ii) coefficients are presented as functions of 
wave steepness in Figures 8 and 9. 

The experimental and theoretical transmission coefficients correlate rather well. The correlation 
for the reflection coefficient can be improved by assuming an inertial coefficient greater than one. 
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Figure 9. Reflection and transmission coefficients for trapezoidal layered breakwater (TW-2): dependence on wave 
steepness and on inertial coefficient ( S  = 1, S = 2) 
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Figure 10. Definition sketch and co-ordinate system 

This is indicated in Figure 9, where S = 2 as proposed by Le Meha~t i5 . l~  A general discussion 
explaining the observed differences between the theoretical and experimental reflection coefficients 
has already been given by the author.' 7,1  

Wind-driven currents in the sea 

It is assumed that the fluid motion in the shallow sea (Figure 10) is governed by 'O 

1 a2v 

dt P az2  
20, x V + - V ~ ( P  + YZ) - kv- - khV2V = 0 ,  

dV 
~- 
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where V = V(u, u, w), oE is the Earth's angular frequency, k,(k,) is the coefficient of exchange of 
momentum in the vertical (horizontal) direction, and V and V, are two-dimensional and 
three-dimensional gradient operators. 

It is further assumed that k,V2V, w E 0, p = p ( c ) ,  where [ is the local water surface elevation. If 
the motion equations are integrated vertically, and if the boundary conditions at the free surface 
and the bottom are applied, then in a steady motion one obtains2' 

V'$=P( ), (62) 
where $ is the stream function, and P( ) is a function of $, [ and h. Equation (62), with proper 
boundary conditions, can be solved iteratively using the method described earlier. In order to 
compare the numerical results with available analytical results a simple problem of wind-driven 
currents in a rectangular sea of constant depth has been considered.21 Assuming that [ < < h ,  
T~~ = - r1 cos(ny/bl), zSy  = 0, the boundary-value problem for $i (ith iteration) can be written 
as follows: 

where a =  c,,df,/ay; c,,, c,,, z, are constants and f, is the Coriolis parameter. 
The boundary-value problem, equations (63) and (64), has been solved for the case where f, 

is a linear function of y(cr = n/a, ,a,  = b,, N = 40, M = 200). The numerical results are in very 
good agreement with the analytical solution of Stomme12' (Figure 1 1 ) .  

As another example it is assumed that only w E 0 and, as in the previous example, p = p ( [ ) .  If 
the motion equation is integrated vertically and if the boundary conditions at the free surface 
and at the bottom are applied, then in a steady motion one obtains22 

-- I - p r e s e n t  method w ? 
Stornrnel 

X - 
a1 

Figure 1 1 .  Stream function-comparison between numerical and analytical results 

0 0,2 O A  0,6 03 ',O 
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p r e s e n t  method 
I o Kantorovich and Krylov 
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2% 

Figure 12. Stream function-comparison between numerical and analytical results 

where i (  ) is a function of $,( and h. 
The analytical solution of equation (65) with homogeneous boundary conditions for the stream 

function and its normal derivative is known only in some simple cases. Thus, in order to compare 
the numerical results with available analytical solutions further simplifications are necessary. 

A sea of uniform depth and rectangular shape is to be considered. Assuming that [ ~ h ,  
z,, = z2,y + z22, zSy = 0, f ,  = constant, the boundary value problem for rl/ can be written as 
follows: 

R: v"* = c21, (66) 

= 0 ,  a* 9: * = 0, - an 

where z21,z22 and c21 are constant. The boundary-value problem, equations (66) and (67), can 
be solved using well known particular solutions of equation (66). In the present approach the 
solutions have been obtained using the theory described earlier for solving the biharmonic 
non-homogeneous equation boundary-value problems. The numerical results (a2 = b,, N = 40, 
M = 2) are in very good agreement with the analytical solution of Kantorovich and K r y 1 0 v ~ ~  
(Figure 12). 

FURTHER DISCUSSION AND CONCLUSIONS 

Integral equations arising from BEM formulation for plane fluid flow problems are usually solved 
under the assumption of uniformly distributed functions occurring in the integrands over the 
boundary or internal  element^.'^^*"*^^ This procedure has been modified in this paper by using 
linearly varying functions and then applying simple local co-ordinate systems to the solution of 
the integral equations. The general advantages of the present BEM approach versus others 
approximate methods are consistent with those described by Banerjee and Butterfield2 for 
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conventional BEM. The presented approach, however, has some additional advantages. The main 
one is that fewer points are required for the discretization of the region and the boundary of the 
region than in the conventional BEM approach. Furthermore it is simple, it allows calculation of 
the tangential derivative of the seeking functions at  the boundary elements, it can be used to define 
coefficients for numerical integration and it can be very helpful when the functions fl  or 4 are only 
defined pointwise, as is the case in many practical problems. 

The present BEM approach has been shown to be an efficient technique in the numerical 
solution of common fluid flow problems encountered in ocean engineering. Since this method 
allows us to solve the boundary value problems for the Laplace or Poisson equations or for the 
homogeneous or non-homogeneous biharmonic equations, a wide range of fluid flow problems, 
including compressible or viscous ones, can be solved using this method. 

The presented method also has applications other than fluid flow problems. Many problems of 
elastostatics, elastoplasticity, thin plates, electrostatics, diffusion and heat conduction can be 
solved efficiently using this method. 
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APPENDIX I 

The quantities I::,,, 1:; and ITm can be determined from the following formulae: 

where 

1 d 3  - c2d3  2 cd3 
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E , ( c , d ) =  InC(1 + c 2 ) E V 2 + 2 c d A + d 2 ] ,  (74) 
E2(c ,  d )  = arctan “1 + c ; A + c d ] ,  

E 3 ( c , d )  = arctan [ c , , d ] .  ~ 

(75) 

APPENDIX I1 

The quantities IIzm, I I z i  and 11;; can be determined from the following formulae: 

II;,, = IIzi(c, d)  - IIzi(a, b) ,  

11:; = 11;;yc, d )  - 11:;yu, b) , 

11;; = 11;;qc, d )  - 11;;qu, b) ,  

(77) 

(78) 

(79) 
1 

IIzi(c, d )  = B5 ~ [’ T ( 1 + c2)(  E - 3) - 4 T1 A5 - a T7L4 - 4 T9 ,I3 
1 + c 2  * O0 

where 
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1 
1 +c’ 

K,, VI.1 (c, 4 = B52- [U,,(l +C’)E, + U , , ( l  +“)-~u13.5-,uhi4-fugj”3 

U,(C, d )  = +( 1 + c’)c + A( I + c’)c3, 

U3(c ,  d )  = A( I + C 2 ) C d 2 ,  

U 2 ( c ,  d )  = a( I + c2)’d + +c2d + &c4d - Ad, 

U,(C, d )  = i(  I + c’)d3 + fc’d3, 

U,(C ,  d )  = id4, 

U,(c,d)= -2U,cd/(l + c 2 ) +  u2, 

U,(c ,d)= -2U,cd/(l +2)+ u,, 
U,(c, d )  = - Ufjd2/( 1 + c’) + u,, 

and 

- W10~”-+W12El +(W,,c+ Wlod)E2]~;~, 
where 

W,~(C,  d )  = $($c + &c3)Iw4 + i(  1 + c2)dA3 + $cd212 + i d 3 i ,  

W,, (c, d )  = - $($c + $c3 - 5E3)i4 - +($d + 4c2d),I3 - iCd2ju2 - $d3j., 

w, (c, d )  = $( 1 + c’)c + A( I + c’)c3, 

W2(c, d )  = f ( l  + 2 ) ’ d  + tc’d + h C 4 d  - i d  

w3 (c, d )  = %( 1 + C’)Cd’, 

W5(c, d )  = 3Cd4, 

W4(c, d )  = f ( l  + c2)d3  + t c 2 d 3 ,  

W,(c,d)= -2Wlcd/(l + c 2 ) + W 2 ,  
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W,(c,d)= - W,d2/(1 +2)+ w,, 
w , ~ )  = - 2w6cd/(i + c 2 )  + w,, 
W,(C,d) = - W6d2/(1 + 2) + w,, 

W,o(c,d) = - 2W,cd/(l + c2)  + w,, 

w, 1 (c, d )  = - W,d2/( 1 + 2) + w,, 
W , , ( e , d ) =  -2Wlocd/(l +2)+ w,, 
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